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Visual notations beyond computer science

Feynman diagrams.

Quantum electrodynamics

Sample problem: electron scattering

“The formalism was notoriously cumbersome, an algebraic
nightmare of distinct terms to track and evaluate. . .
Individual contributions to the overall calculation stretched over
four or five lines of algebra.”

– David Kaiser, in “Physics and Feynman’s Diagrams,” American
Scientist, volume 93.
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Visual notations beyond computer science

Feynman diagrams.

e2
∫ ∫

K (3, 5)K (4, 6)γµδ(s256)

γµK (5, 1)K (6, 2)d4x5d
4x6

→

Richard Feynman, Space-Time Approach to Quantum Electrodynamics, 1949.
David Kaiser, “Physics and Feynman’s Diagrams”, American Scientist volume 93, 2005.
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Visual notations for computer science?

dbm = 0

for dim in _DAYS_IN_MONTH[1:]:

_DAYS_BEFORE_MONTH.append(dbm)

dbm += dim

del dbm, dim

def _is_leap(year):

"year -> 1 if leap year, else 0."

return year % 4 == 0 and (year % 100 != 0 or

year % 400 == 0)

def _days_before_year(year):

"year -> number of days before January 1st of year."

y = year - 1

return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):

"year, month -> number of days in that month in that year."

assert 1 <= month <= 12, month

if month == 2 and _is_leap(year):

return 29

return _DAYS_IN_MONTH[month]

→ What visual equivalent?
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Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:

Flask - http://grokcode.com/864/snakefooding-python-code-for-complexity-visualization/

...but can we have a notation for the entire language?
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Visual notations

Lots of notations used in CS, math, and science are highly visual.

But programming languages themselves aren’t.

Claim: It’s possible to create a visual notation for an entire
programming language.

Proof: by lambda calculus.
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Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.
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Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function: Multiple arguments, and application:
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Example: circuitry for lambda calculus

Example execution:
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Example: circuitry for lambda calculus

Building Boolean logic:
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Example: circuitry for lambda calculus

“if true then 1 else 0”
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Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

ω = λx . (x x)

ωω = (λx . (x x)) (λx . (x x)) = . . .
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Example: circuitry for lambda calculus

Fixed point combinator:

Y f = f Y f

Y = λf . (λx . f (x x)) (λx . f (x x))
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Suggested further exercises

Implement numbers: addition, subtraction, multiplication,
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To Dissect a
Mockingbird

Alligator Eggs game Visual Lambda
Calculus, bubble
notation and GUI
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Notations as abstractions

Notations can only exist on top of abstractions.

Abstractions trade freedom for specificity.
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Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code
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languages...

sometimes you get into wars about which ones are right!
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Notation wars

Vectors vs. quaternions.

Oliver Heaviside, in Electromagnetic Theory, 1893:

“A vector is considered by Hamilton and Tait to be a quaternion. . .
It is really a vector. It is as unfair to call a vector a quaternion as
to call a man a quadruped.”

“Students who had found quaternions quite hopeless could
understand my vectors very well.”
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Notation wars

Standards proliferated.

Florian Cajori, in A History of Mathematical Notations, 1928:

“...the mark ‘V∇a,’ used by Tait, is Gibb’s ‘∇× a,’ Heaviside’s
‘curl a,’ Wiechert’s ‘Quirl a,’ Lorentz’ ‘Rot a,’ Voigt’s ‘Vort a,’
Abraham and Langevin’s ‘Rot ã.’ ”

committee appointed by Felix Klein in 1903: couldn’t decide

special commission of the International Congress of
Mathematicians in 1908: couldn’t decide

Maybe having many standards is the necessary price of innovation.
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What programming languages can learn from notations:

Be visual

Build abstractions

Standardization wars happen sometimes

Further reading:

Drawing Theories Apart, David Kaiser: the history of
Feynman diagrams

To Mock a Mockingbird, Raymond Smullyan: combinator
puzzles

A History of Mathematical Notations, Florian Cajori

Thanks!

@csvoss
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