
Visual notations Lambda circuitry Abstractions

Programming Languages as Notations

Chelsea Voss

@csvoss

Software Engineer at Wave
chelsea@wave.com

April 20, 2017

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

About me: oneliner-izer talk

Claim: it’s possible to write any Python program as one line
of code

Proof: by lambda calculus

Today: notations ↔ programming languages

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

About me: oneliner-izer talk

Claim: it’s possible to write any Python program as one line
of code

Proof: by lambda calculus

Today: notations ↔ programming languages

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

About me: oneliner-izer talk

Claim: it’s possible to write any Python program as one line
of code

Proof: by lambda calculus

Today: notations ↔ programming languages

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

About me: oneliner-izer talk

Claim: it’s possible to write any Python program as one line
of code

Proof: by lambda calculus

Today: notations ↔ programming languages

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations

Lots of notations used in CS, math, and science are highly visual.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations

Lots of notations used in CS, math, and science are highly visual.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations in computer science

Binary tree.

Tree(1,

Tree(2,

Tree(Tree(4, 5),

3)))

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations in computer science

Binary tree.

Tree(1,

Tree(2,

Tree(Tree(4, 5),

3)))

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations in computer science

State machine.

[

Transition(S1, 0, S2),

Transition(S1, 1, S1),

...

]

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations in computer science

State machine.

[

Transition(S1, 0, S2),

Transition(S1, 1, S1),

...

]

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations in computer science

Boolean circuits.

Cout = Or(And(A, B),
And(Cin, Xor(A, B)))

S = Xor(Xor(A, B), Cin)

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations in computer science

Boolean circuits.

Cout = Or(And(A, B),
And(Cin, Xor(A, B)))

S = Xor(Xor(A, B), Cin)

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Protein signalling pathways.

A inhibits B

A inhibits C

B activates C

C activates D

D activates B

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Protein signalling pathways.

A inhibits B

A inhibits C

B activates C

C activates D

D activates B

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Protein signalling pathways.

A inhibits B

A inhibits C

B activates C

C activates D

D activates B

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Protein signalling pathways.

A inhibits B

A inhibits C

B activates C

C activates D

D activates B

→

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Feynman diagrams.

Quantum electrodynamics

Sample problem: electron scattering

“The formalism was notoriously cumbersome, an algebraic
nightmare of distinct terms to track and evaluate. . .
Individual contributions to the overall calculation stretched over
four or five lines of algebra.”

– David Kaiser, in “Physics and Feynman’s Diagrams,” American
Scientist, volume 93.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Feynman diagrams.

Quantum electrodynamics

Sample problem: electron scattering

“The formalism was notoriously cumbersome, an algebraic
nightmare of distinct terms to track and evaluate. . .
Individual contributions to the overall calculation stretched over
four or five lines of algebra.”

– David Kaiser, in “Physics and Feynman’s Diagrams,” American
Scientist, volume 93.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Feynman diagrams.

Quantum electrodynamics

Sample problem: electron scattering

“The formalism was notoriously cumbersome, an algebraic
nightmare of distinct terms to track and evaluate. . .
Individual contributions to the overall calculation stretched over
four or five lines of algebra.”

– David Kaiser, in “Physics and Feynman’s Diagrams,” American
Scientist, volume 93.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Feynman diagrams.

Quantum electrodynamics

Sample problem: electron scattering

“The formalism was notoriously cumbersome, an algebraic
nightmare of distinct terms to track and evaluate. . .
Individual contributions to the overall calculation stretched over
four or five lines of algebra.”

– David Kaiser, in “Physics and Feynman’s Diagrams,” American
Scientist, volume 93.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Feynman diagrams.

e2
∫ ∫

K (3, 5)K (4, 6)γµδ(s256)

γµK (5, 1)K (6, 2)d4x5d
4x6

→

Richard Feynman, Space-Time Approach to Quantum Electrodynamics, 1949.
David Kaiser, “Physics and Feynman’s Diagrams”, American Scientist volume 93, 2005.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Feynman diagrams.

e2
∫ ∫

K (3, 5)K (4, 6)γµδ(s256)

γµK (5, 1)K (6, 2)d4x5d
4x6

→

Richard Feynman, Space-Time Approach to Quantum Electrodynamics, 1949.
David Kaiser, “Physics and Feynman’s Diagrams”, American Scientist volume 93, 2005.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations beyond computer science

Feynman diagrams.

e2
∫ ∫

K (3, 5)K (4, 6)γµδ(s256)

γµK (5, 1)K (6, 2)d4x5d
4x6

→

Richard Feynman, Space-Time Approach to Quantum Electrodynamics, 1949.
David Kaiser, “Physics and Feynman’s Diagrams”, American Scientist volume 93, 2005.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

dbm = 0

for dim in _DAYS_IN_MONTH[1:]:

_DAYS_BEFORE_MONTH.append(dbm)

dbm += dim

del dbm, dim

def _is_leap(year):

"year -> 1 if leap year, else 0."

return year % 4 == 0 and (year % 100 != 0 or

year % 400 == 0)

def _days_before_year(year):

"year -> number of days before January 1st of year."

y = year - 1

return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):

"year, month -> number of days in that month in that year."

assert 1 <= month <= 12, month

if month == 2 and _is_leap(year):

return 29

return _DAYS_IN_MONTH[month]

→ What visual equivalent?

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

dbm = 0

for dim in _DAYS_IN_MONTH[1:]:

_DAYS_BEFORE_MONTH.append(dbm)

dbm += dim

del dbm, dim

def _is_leap(year):

"year -> 1 if leap year, else 0."

return year % 4 == 0 and (year % 100 != 0 or

year % 400 == 0)

def _days_before_year(year):

"year -> number of days before January 1st of year."

y = year - 1

return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):

"year, month -> number of days in that month in that year."

assert 1 <= month <= 12, month

if month == 2 and _is_leap(year):

return 29

return _DAYS_IN_MONTH[month]

→ What visual equivalent?

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

dbm = 0

for dim in _DAYS_IN_MONTH[1:]:

_DAYS_BEFORE_MONTH.append(dbm)

dbm += dim

del dbm, dim

def _is_leap(year):

"year -> 1 if leap year, else 0."

return year % 4 == 0 and (year % 100 != 0 or

year % 400 == 0)

def _days_before_year(year):

"year -> number of days before January 1st of year."

y = year - 1

return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):

"year, month -> number of days in that month in that year."

assert 1 <= month <= 12, month

if month == 2 and _is_leap(year):

return 29

return _DAYS_IN_MONTH[month]

→

What visual equivalent?

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

dbm = 0

for dim in _DAYS_IN_MONTH[1:]:

_DAYS_BEFORE_MONTH.append(dbm)

dbm += dim

del dbm, dim

def _is_leap(year):

"year -> 1 if leap year, else 0."

return year % 4 == 0 and (year % 100 != 0 or

year % 400 == 0)

def _days_before_year(year):

"year -> number of days before January 1st of year."

y = year - 1

return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):

"year, month -> number of days in that month in that year."

assert 1 <= month <= 12, month

if month == 2 and _is_leap(year):

return 29

return _DAYS_IN_MONTH[month]

→ What visual equivalent?

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:

Flask - http://grokcode.com/864/snakefooding-python-code-for-complexity-visualization/

...but can we have a notation for the entire language?

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:

Flask - http://grokcode.com/864/snakefooding-python-code-for-complexity-visualization/

...but can we have a notation for the entire language?

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:

Flask - http://grokcode.com/864/snakefooding-python-code-for-complexity-visualization/

...but can we have a notation for the entire language?

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:

Flask - http://grokcode.com/864/snakefooding-python-code-for-complexity-visualization/

...but can we have a notation for the entire language?
Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations

Lots of notations used in CS, math, and science are highly visual.

But programming languages themselves aren’t.

Claim: It’s possible to create a visual notation for an entire
programming language.

Proof: by lambda calculus.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations

Lots of notations used in CS, math, and science are highly visual.

But programming languages themselves aren’t.

Claim: It’s possible to create a visual notation for an entire
programming language.

Proof: by lambda calculus.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations

Lots of notations used in CS, math, and science are highly visual.

But programming languages themselves aren’t.

Claim: It’s possible to create a visual notation for an entire
programming language.

Proof: by lambda calculus.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations

Lots of notations used in CS, math, and science are highly visual.

But programming languages themselves aren’t.

Claim: It’s possible to create a visual notation for an entire
programming language.

Proof:

by lambda calculus.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Visual notations

Lots of notations used in CS, math, and science are highly visual.

But programming languages themselves aren’t.

Claim: It’s possible to create a visual notation for an entire
programming language.

Proof: by lambda calculus.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) =

2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) =

5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) =

((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =

...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Lambda calculus is:

A formalization of computation, devised by Alonzo Church
around 1935

Consists of expressions made only of functions and their
arguments

For example, (λx . x) is the identity function.

((λx . x) 2) = 2

((λx . λy . x + y) 2 3) = 5

((λx . (x x)) (λx . (x x))) = ((λx . (x x)) (λx . (x x))) =
...loops forever.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function: Multiple arguments, and application:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function:

Multiple arguments, and application:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function:

Multiple arguments, and application:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function: Multiple arguments, and application:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function: Multiple arguments, and application:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Example execution:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Example execution:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Example execution:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Building Boolean logic:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Building Boolean logic:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Building Boolean logic:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Building Boolean logic:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Building Boolean logic:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

“if true then 1 else 0”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

“if true then 1 else 0”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

“if true then 1 else 0”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

“if true then 1 else 0”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

ω = λx . (x x)

ωω = (λx . (x x)) (λx . (x x)) = . . .

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

ω = λx . (x x)

ωω = (λx . (x x)) (λx . (x x)) = . . .

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

ω = λx . (x x)

ωω = (λx . (x x)) (λx . (x x)) = . . .

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

ω = λx . (x x)

ωω = (λx . (x x)) (λx . (x x)) = . . .

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

ω = λx . (x x)

ωω = (λx . (x x)) (λx . (x x)) = . . .

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Fixed point combinator:

Y f = f Y f

Y = λf . (λx . f (x x)) (λx . f (x x))

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Fixed point combinator:

Y f = f Y f

Y = λf . (λx . f (x x)) (λx . f (x x))

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Fixed point combinator:

Y f = f Y f

Y = λf . (λx . f (x x)) (λx . f (x x))

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Fixed point combinator:

Y f = f Y f

Y = λf . (λx . f (x x)) (λx . f (x x))

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Example: circuitry for lambda calculus

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Suggested further exercises

Implement numbers: addition, subtraction, multiplication,
exponentiation

map, reduce, filter for the list implementation

combinator puzzles in To Mock a Mockingbird

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Suggested further exercises

Implement numbers: addition, subtraction, multiplication,
exponentiation

map, reduce, filter for the list implementation

combinator puzzles in To Mock a Mockingbird

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Suggested further exercises

Implement numbers: addition, subtraction, multiplication,
exponentiation

map, reduce, filter for the list implementation

combinator puzzles in To Mock a Mockingbird

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Suggested further exercises

Implement numbers: addition, subtraction, multiplication,
exponentiation

map, reduce, filter for the list implementation

combinator puzzles in To Mock a Mockingbird

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Similar previous work

To Dissect a
Mockingbird

Alligator Eggs game Visual Lambda
Calculus, bubble
notation and GUI

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Similar previous work

To Dissect a
Mockingbird

Alligator Eggs game Visual Lambda
Calculus, bubble
notation and GUI

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Similar previous work

To Dissect a
Mockingbird

Alligator Eggs game

Visual Lambda
Calculus, bubble
notation and GUI

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Similar previous work

To Dissect a
Mockingbird

Alligator Eggs game Visual Lambda
Calculus, bubble
notation and GUI

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notations as abstractions

Notations can only exist on top of abstractions.

Abstractions trade freedom for specificity.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notations as abstractions

Notations can only exist on top of abstractions.

Abstractions trade freedom for specificity.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notations as abstractions

Notations can only exist on top of abstractions.

Abstractions trade freedom for specificity.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notations as abstractions

Notations can only exist on top of abstractions.

Abstractions trade freedom for specificity.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking

Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks

programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models

Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus

both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Keep making abstractions!

Abstractions that limit allowable code to be more correct

Static type checking
Dependent types for code correctness

Dafny: ensures, requires

Executable biology – programs that simulate biological
processes

Kappa: rule-based protein interaction networks
programming languages for other abstraction levels?

New programming models
Pict: concurrent programming

π-calculus
both sequential composition and parallel composition of
code

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

One final similarity between notations and programming
languages...

sometimes you get into wars about which ones are right!

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

One final similarity between notations and programming
languages...

sometimes you get into wars about which ones are right!

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Vectors vs. quaternions.

Oliver Heaviside, in Electromagnetic Theory, 1893:

“A vector is considered by Hamilton and Tait to be a quaternion. . .
It is really a vector. It is as unfair to call a vector a quaternion as
to call a man a quadruped.”

“Students who had found quaternions quite hopeless could
understand my vectors very well.”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Vectors vs. quaternions.

Oliver Heaviside, in Electromagnetic Theory, 1893:

“A vector is considered by Hamilton and Tait to be a quaternion. . .
It is really a vector. It is as unfair to call a vector a quaternion as
to call a man a quadruped.”

“Students who had found quaternions quite hopeless could
understand my vectors very well.”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Vectors vs. quaternions.

Oliver Heaviside, in Electromagnetic Theory, 1893:

“A vector is considered by Hamilton and Tait to be a quaternion. . .
It is really a vector. It is as unfair to call a vector a quaternion as
to call a man a quadruped.”

“Students who had found quaternions quite hopeless could
understand my vectors very well.”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Vectors vs. quaternions.

Oliver Heaviside, in Electromagnetic Theory, 1893:

“A vector is considered by Hamilton and Tait to be a quaternion. . .
It is really a vector. It is as unfair to call a vector a quaternion as
to call a man a quadruped.”

“Students who had found quaternions quite hopeless could
understand my vectors very well.”

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Standards proliferated.

Florian Cajori, in A History of Mathematical Notations, 1928:

“...the mark ‘V∇a,’ used by Tait, is Gibb’s ‘∇× a,’ Heaviside’s
‘curl a,’ Wiechert’s ‘Quirl a,’ Lorentz’ ‘Rot a,’ Voigt’s ‘Vort a,’
Abraham and Langevin’s ‘Rot ã.’ ”

committee appointed by Felix Klein in 1903: couldn’t decide

special commission of the International Congress of
Mathematicians in 1908: couldn’t decide

Maybe having many standards is the necessary price of innovation.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Standards proliferated.

Florian Cajori, in A History of Mathematical Notations, 1928:

“...the mark ‘V∇a,’ used by Tait, is Gibb’s ‘∇× a,’ Heaviside’s
‘curl a,’ Wiechert’s ‘Quirl a,’ Lorentz’ ‘Rot a,’ Voigt’s ‘Vort a,’
Abraham and Langevin’s ‘Rot ã.’ ”

committee appointed by Felix Klein in 1903: couldn’t decide

special commission of the International Congress of
Mathematicians in 1908: couldn’t decide

Maybe having many standards is the necessary price of innovation.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Standards proliferated.

Florian Cajori, in A History of Mathematical Notations, 1928:

“...the mark ‘V∇a,’ used by Tait, is Gibb’s ‘∇× a,’ Heaviside’s
‘curl a,’ Wiechert’s ‘Quirl a,’ Lorentz’ ‘Rot a,’ Voigt’s ‘Vort a,’
Abraham and Langevin’s ‘Rot ã.’ ”

committee appointed by Felix Klein in 1903: couldn’t decide

special commission of the International Congress of
Mathematicians in 1908: couldn’t decide

Maybe having many standards is the necessary price of innovation.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Standards proliferated.

Florian Cajori, in A History of Mathematical Notations, 1928:

“...the mark ‘V∇a,’ used by Tait, is Gibb’s ‘∇× a,’ Heaviside’s
‘curl a,’ Wiechert’s ‘Quirl a,’ Lorentz’ ‘Rot a,’ Voigt’s ‘Vort a,’
Abraham and Langevin’s ‘Rot ã.’ ”

committee appointed by Felix Klein in 1903: couldn’t decide

special commission of the International Congress of
Mathematicians in 1908: couldn’t decide

Maybe having many standards is the necessary price of innovation.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

Notation wars

Standards proliferated.

Florian Cajori, in A History of Mathematical Notations, 1928:

“...the mark ‘V∇a,’ used by Tait, is Gibb’s ‘∇× a,’ Heaviside’s
‘curl a,’ Wiechert’s ‘Quirl a,’ Lorentz’ ‘Rot a,’ Voigt’s ‘Vort a,’
Abraham and Langevin’s ‘Rot ã.’ ”

committee appointed by Felix Klein in 1903: couldn’t decide

special commission of the International Congress of
Mathematicians in 1908: couldn’t decide

Maybe having many standards is the necessary price of innovation.

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

What programming languages can learn from notations:

Be visual

Build abstractions

Standardization wars happen sometimes

Further reading:

Drawing Theories Apart, David Kaiser: the history of
Feynman diagrams

To Mock a Mockingbird, Raymond Smullyan: combinator
puzzles

A History of Mathematical Notations, Florian Cajori

Thanks!

@csvoss

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

What programming languages can learn from notations:

Be visual

Build abstractions

Standardization wars happen sometimes

Further reading:

Drawing Theories Apart, David Kaiser: the history of
Feynman diagrams

To Mock a Mockingbird, Raymond Smullyan: combinator
puzzles

A History of Mathematical Notations, Florian Cajori

Thanks!

@csvoss

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

What programming languages can learn from notations:

Be visual

Build abstractions

Standardization wars happen sometimes

Further reading:

Drawing Theories Apart, David Kaiser: the history of
Feynman diagrams

To Mock a Mockingbird, Raymond Smullyan: combinator
puzzles

A History of Mathematical Notations, Florian Cajori

Thanks!

@csvoss

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

What programming languages can learn from notations:

Be visual

Build abstractions

Standardization wars happen sometimes

Further reading:

Drawing Theories Apart, David Kaiser: the history of
Feynman diagrams

To Mock a Mockingbird, Raymond Smullyan: combinator
puzzles

A History of Mathematical Notations, Florian Cajori

Thanks!

@csvoss

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

What programming languages can learn from notations:

Be visual

Build abstractions

Standardization wars happen sometimes

Further reading:

Drawing Theories Apart, David Kaiser: the history of
Feynman diagrams

To Mock a Mockingbird, Raymond Smullyan: combinator
puzzles

A History of Mathematical Notations, Florian Cajori

Thanks!

@csvoss

Chelsea Voss Deconstruct 2017

Programming Languages as Notations



Visual notations Lambda circuitry Abstractions

What programming languages can learn from notations:

Be visual

Build abstractions

Standardization wars happen sometimes

Further reading:

Drawing Theories Apart, David Kaiser: the history of
Feynman diagrams

To Mock a Mockingbird, Raymond Smullyan: combinator
puzzles

A History of Mathematical Notations, Florian Cajori

Thanks!

@csvoss

Chelsea Voss Deconstruct 2017

Programming Languages as Notations


	Visual notations
	Lambda circuitry
	Abstractions

