Programming Languages as Notations

Chelsea Voss

@csvoss
Software Engineer at Wave
chelsea@wave.com

April 20, 2017
About me: oneliner-izer talk
About me: oneliner-izer talk

- **Claim**: it’s possible to write any Python program as one line of code
Claim: it’s possible to write any Python program as one line of code

Proof: by lambda calculus
Claim: it’s possible to write any Python program as one line of code

Proof: by lambda calculus

Today: notations ↔ programming languages
Visual notations

Lots of notations used in CS, math, and science are highly visual.
Lots of notations used in CS, math, and science are highly visual.
Visual notations in computer science

Binary tree.
Visual notations in computer science

Binary tree.

```
Tree(1,
    Tree(2,
        Tree(Tree(4, 5),
            3)))
```
Visual notations in computer science

State machine.
Visual notations in computer science

State machine.

\[\text{Transition}(S1, 0, S2),\]
\[\text{Transition}(S1, 1, S1),\]
\[\ldots\]

\[\rightarrow\]
Visual notations in computer science

Boolean circuits.
Visual notations in computer science

Boolean circuits.

\[C_{out} = \text{Or}(\text{And}(A, B), \text{And}(C_{in}, \text{Xor}(A, B))) \]
\[S = \text{Xor}(\text{Xor}(A, B), C_{in}) \]
Visual notations beyond computer science

Protein signalling pathways.
Protein signalling pathways.

A inhibits B
A inhibits C
B activates C
C activates D
D activates B
Visual notations beyond computer science

Protein signalling pathways.

A inhibits B
A inhibits C
B activates C
C activates D
D activates B
Visual notations beyond computer science

Protein signalling pathways.

A inhibits B
A inhibits C
B activates C
C activates D
D activates B
Visual notations beyond computer science

Feynman diagrams.
Visual notations beyond computer science

Feynman diagrams.

- Quantum electrodynamics
Visual notations beyond computer science

Feynman diagrams.

- Quantum electrodynamics
- Sample problem: electron scattering
Feynman diagrams.

- Quantum electrodynamics
- Sample problem: electron scattering

“The formalism was notoriously cumbersome, an algebraic nightmare of distinct terms to track and evaluate. . . . Individual contributions to the overall calculation stretched over four or five lines of algebra.”

Feynman diagrams.

\[e^2 \int \int K(3, 5)K(4, 6) \gamma_\mu \delta(s_{56}^2) \gamma_\mu K(5, 1)K(6, 2) d^4 x_5 d^4 x_6 \]
Feynman diagrams.

\[e^2 \int \int K(3, 5)K(4, 6)\gamma_\mu \delta(s_{56}^2) \rightarrow \gamma_\mu K(5, 1)K(6, 2)d^4x_5d^4x_6 \]
Visual notations beyond computer science

Feynman diagrams.

\[e^2 \int \int K(3, 5)K(4, 6)\gamma_\mu \delta(s_{56}^2) \]

\[\gamma_\mu K(5, 1)K(6, 2)d^4x_5d^4x_6 \]

Visual notations for computer science?
dbm = 0
for dim in _DAYS_IN_MONTH[1:]:
 _DAYS_BEFORE_MONTH.append(dbm)
 dbm += dim
del dbm, dim

def _is_leap(year):
 "year \rightarrow 1 if leap year, else 0."
 return year % 4 == 0 and (year % 100 != 0 or
 year % 400 == 0)

def _days_before_year(year):
 "year \rightarrow number of days before January 1st of year."
 y = year - 1
 return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):
 "year, month \rightarrow number of days in that month in that year."
 assert 1 <= month <= 12, month
 if month == 2 and _is_leap(year):
 return 29
 return _DAYS_IN_MONTH[month]
Visual notations for computer science?

```python
dbm = 0
for dim in _DAYS_IN_MONTH[1:]:
    _DAYS_BEFORE_MONTH.append(dbm)
    dbm += dim
del dbm, dim

def _is_leap(year):
    "year -> 1 if leap year, else 0."
    return year % 4 == 0 and (year % 100 != 0 or
    year % 400 == 0)

def _days_before_year(year):
    "year -> number of days before January 1st of year."
    y = year - 1
    return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):
    "year, month -> number of days in that month in that year."
    assert 1 <= month <= 12, month
    if month == 2 and _is_leap(year):
        return 29
    return _DAYS_IN_MONTH[month]
```

→
Visual notations for computer science?

```
dbm = 0
for dim in _DAYS_IN_MONTH[1:]:
    _DAYS_BEFORE_MONTH.append(dbm)
    dbm += dim
del dbm, dim

def _is_leap(year):
    "year -> 1 if leap year, else 0."
    return year % 4 == 0 and (year % 100 != 0 or
        year % 400 == 0)

def _days_before_year(year):
    "year -> number of days before January 1st of year."
    y = year - 1
    return y*365 + y//4 - y//100 + y//400

def _days_in_month(year, month):
    "year, month -> number of days in that month in that year."
    assert 1 <= month <= 12, month
    if month == 2 and _is_leap(year):
        return 29
    return _DAYS_IN_MONTH[month]
```

→ What visual equivalent?
Visual notations for computer science?
Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:
Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:

Visual notations for computer science?

snakefood visualizes dependencies in Python codebases:

...but can we have a notation for the entire language?
Lots of notations used in CS, math, and science are highly visual.
Visual notations

Lots of notations used in CS, math, and science are highly visual. But programming languages themselves aren’t.
Lots of notations used in CS, math, and science are highly visual. But programming languages themselves aren’t.

- **Claim**: It’s possible to create a visual notation for an entire programming language.
Lots of notations used in CS, math, and science are highly visual. But programming languages themselves aren’t.

- **Claim**: It’s possible to create a visual notation for an entire programming language.
- **Proof**:
Lots of notations used in CS, math, and science are highly visual.
But programming languages themselves aren’t.

- **Claim**: It’s possible to create a visual notation for an entire programming language.
- **Proof**: by lambda calculus.
Lambda calculus is:

A formalization of computation, devised by Alonzo Church around 1935.

Consists of expressions made only of functions and their arguments.

For example, \((\lambda x.x)\) is the identity function.

\((\lambda x.x)\) \(\) = 2

\((\lambda x.\lambda y.x + y)\) \(\) = 5

\((\lambda x.(x x))\) \(\) = \(\lambda x.(x x)\) \(\) = ...loops forever.
Example: circuitry for lambda calculus

Lambda calculus is:

Lambda calculus is:
Example: circuitry for lambda calculus

Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of functions and their arguments

Example: circuitry for lambda calculus
Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of *functions* and their arguments
- For example, \((\lambda x. x)\) is the identity function.
Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of *functions* and their arguments
- For example, \((\lambda x. x)\) is the identity function.
- \(((\lambda x. x) 2) = \)
Example: circuitry for lambda calculus

Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of *functions* and their arguments
- For example, \((\lambda x. x)\) is the identity function.
- \(((\lambda x. x) 2) = 2\)
Example: circuitry for lambda calculus

Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of *functions* and their arguments
- For example, \((\lambda x. x)\) is the identity function.
- \((\lambda x. x) 2\) = 2
- \((\lambda x. \lambda y. x + y) 2 3\) = ...loops forever.
Example: circuitry for lambda calculus

Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of functions and their arguments
- For example, \((\lambda x. x)\) is the identity function.
- \(((\lambda x. x) 2) = 2\)
- \(((\lambda x. \lambda y. x + y) 2 3) = 5\)
Example: circuitry for lambda calculus

Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of *functions* and their arguments
- For example, \((\lambda x. x)\) is the identity function.
- \(((\lambda x. x) 2) = 2\)
- \(((\lambda x. \lambda y. x + y) 2 3) = 5\)
- \(((\lambda x. (x x)) (\lambda x. (x x))) = \)
Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of *functions* and their arguments
- For example, \((\lambda x. x) \) is the identity function.

\[
\begin{align*}
((\lambda x. x) \ 2) & = 2 \\
((\lambda x. \lambda y. x + y) \ 2 \ 3) & = 5 \\
((\lambda x. (x\ x)) \ (\lambda x. (x\ x))) & = ((\lambda x. (x\ x)) \ (\lambda x. (x\ x)))
\end{align*}
\]
Lambda calculus is:

- A formalization of computation, devised by Alonzo Church around 1935
- Consists of expressions made only of *functions* and their arguments
- For example, \((\lambda x. x)\) is the identity function.
- \(((\lambda x. x) \ 2) = 2\)
- \(((\lambda x. \lambda y. x + y) \ 2 \ 3) = 5\)
- \(((\lambda x. (x \ x)) (\lambda x. (x \ x))) = ((\lambda x. (x \ x)) (\lambda x. (x \ x))) = \ldots \text{loops forever.}\)
Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions
Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function:
Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function:

\[\lambda x . x \]
Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function: \(\lambda x. x \)

Multiple arguments, and application:
Example: circuitry for lambda calculus

Basic design: inputs flow to outputs, passing through functions

The identity function:

\[\lambda x. \ x \]

Multiple arguments, and application:

\[\lambda x. \lambda y. \ x \ y \]

apply function \(x \) to input \(y \)

top-down: \(x \) then \(y \)
Example: circuitry for lambda calculus

Example execution:
Example: circuitry for lambda calculus

Example execution:

\[(\lambda x. x) \ 5\]
Example: circuitry for lambda calculus

Example execution:

\((\lambda x. \ x) \ 5\) \[\rightarrow\] 5

Diagram: [Diagram of lambda circuitry execution]
Example: circuitry for lambda calculus

Building Boolean logic:
Example: circuitry for lambda calculus

Building Boolean logic:

"true" \(\lambda x. \lambda y. x\)

"false" \(\lambda x. \lambda y. y\)
Example: circuitry for lambda calculus

Building Boolean logic:

"true" \(\lambda x. \lambda y. x \)

"false" \(\lambda x. \lambda y. y \)
Example: circuitry for lambda calculus

Building Boolean logic:

```
"true"  λx. λy. x

"false"  λx. λy. y

"if a then b else c"  λa. λb. λc. a b c
```
Example: circuitry for lambda calculus

Building Boolean logic:

"true" \(\lambda x. \lambda y. x \)

"false" \(\lambda x. \lambda y. y \)

"if a then b else c" \(\lambda a. \lambda b. \lambda c. a \ b \ c \)

function a applied to args (b, c)
"if true then 1 else 0"

\((\lambda \alpha. \lambda \beta. \lambda \gamma. \alpha \beta \gamma) \ (\lambda x. \lambda y. x) \ 1 \ 0 \)
Example: circuitry for lambda calculus

"if true then 1 else 0"

\[(\lambda a. \lambda b. \lambda c. a \, b \, c) \, (\lambda x. \lambda y. x) \, 1 \, 0\]
Example: circuitry for lambda calculus

“if true then 1 else 0”
Example: circuitry for lambda calculus

“if true then 1 else 0”
Example: circuitry for lambda calculus

“if true then 1 else 0”
Example: circuitry for lambda calculus

“if true then 1 else 0”
Example: circuitry for lambda calculus

Linked lists
first =
second =
pair =
Example: circuitry for lambda calculus

Linked lists

first = \lambda p. \ p \ true
second = \lambda p. \ p \ false
pair = \lambda a. \ lambda b. \ \lambda x. \ if x then a else b
Example: circuitry for lambda calculus

Linked lists

\[\text{first} = \lambda p. \ p \ \text{true} \quad = \lambda p. \ p \ (\lambda x. \ \lambda y. \ x) \]
\[\text{second} = \lambda p. \ p \ \text{false} \quad = \lambda p. \ p \ (\lambda x. \ \lambda y. \ y) \]

\[\text{pair} = \lambda a. \ \lambda b. \ \lambda x. \ \text{if} \ x \ \text{then} \ a \ \text{else} \ b \]
\[= \lambda a. \ \lambda b. \ \lambda x. \ x \ a \ b \]
Example: circuitry for lambda calculus

Linked lists

first =

second =

pair =

= λa. λb. λx. x a b

= λp. p (λx. λy. x)

= λp. p (λx. λy. y)
Example: circuitry for lambda calculus

Omega combinator – applies input to itself:
Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

\[\omega = \lambda x. (x \, x) \]
Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

\[\omega = \lambda x. (x \ x) \]

\[\omega \omega = (\lambda x. (x \ x)) (\lambda x. (x \ x)) = \ldots \]
Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

\[\omega = \lambda x. (x \, x) \]

\[\omega \omega = (\lambda x. (x \, x)) \, (\lambda x. (x \, x)) = \ldots \]
Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

\[\omega = \lambda x. (x\ x) \]

\[\omega \omega = (\lambda x. (x\ x))\ (\lambda x. (x\ x)) = \ldots \]
Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

\[\omega = \quad \text{[Diagram]} \]

\[\omega \omega = \quad \text{[Diagram]} \]

\[= \quad \text{[Diagram]} \]
Example: circuitry for lambda calculus

Omega combinator – applies input to itself:

\[\omega = \]

\[\omega \omega = \]

\[= \]
Example: circuitry for lambda calculus

Fixed point combinator:
Example: circuitry for lambda calculus

Fixed point combinator:

\[Y f = f \ Y f \]
Example: circuitry for lambda calculus

Fixed point combinator:

\[Y \ f = f \ Y \ f \]

\[Y = \lambda f. \ (\lambda x. \ f \ (x \ x)) \ (\lambda x. \ f \ (x \ x)) \]
Example: circuitry for lambda calculus

Fixed point combinator:

\[Y \ f = f \ Y \ f \]

\[Y = \lambda f. (\lambda x. f (x \ x)) (\lambda x. f (x \ x)) \]
Example: circuitry for lambda calculus

\[Y = \]

\[Yf = f \]
Example: circuitry for lambda calculus

\[Y = \]

\[Yf = f \]

\[= \]
Example: circuitry for lambda calculus

\[Y = \]

\[Yf = f \]

\[= \]

\[= \]

\[= \]
Example: circuitry for lambda calculus

\[Y = \]

\[Yf = f \]

\[= \]

\[= \]

\[= f Yf \]
Suggested further exercises
Suggested further exercises

- Implement numbers: addition, subtraction, multiplication, exponentiation
Suggested further exercises

- Implement numbers: addition, subtraction, multiplication, exponentiation
- map, reduce, filter for the list implementation
Suggested further exercises

- Implement numbers: addition, subtraction, multiplication, exponentiation
- map, reduce, filter for the list implementation
- combinator puzzles in *To Mock a Mockingbird*
Similar previous work
Similar previous work

To Dissect a Mockingbird
Similar previous work

To Dissect a Mockingbird

Alligator Eggs game
Similar previous work

To Dissect a Mockingbird

Alligator Eggs game

Visual Lambda Calculus, bubble notation and GUI
Notations as abstractions

Notations can only exist on top of abstractions. Abstractions trade freedom for specificity.
Notations as abstractions

Notations can only exist on top of abstractions. Abstractions trade freedom for specificity.
Notations as abstractions

Notations can only exist on top of abstractions.
Notations as abstractions

Notations can only exist on top of abstractions. Abstractions trade freedom for specificity.
Keep making abstractions!
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
- *Executable biology* – programs that simulate biological processes
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
- Executable biology – programs that simulate biological processes
 - Kappa: rule-based protein interaction networks
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
- *Executable biology* – programs that simulate biological processes
 - Kappa: rule-based protein interaction networks
 - programming languages for other abstraction levels?
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
- *Executable biology* – programs that simulate biological processes
 - Kappa: rule-based protein interaction networks
 - programming languages for other abstraction levels?
- New programming models
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
- Executable biology – programs that simulate biological processes
 - Kappa: rule-based protein interaction networks
 - programming languages for other abstraction levels?
- New programming models
 - Pict: concurrent programming
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
- *Executable biology* – programs that simulate biological processes
 - Kappa: rule-based protein interaction networks
 - programming languages for other abstraction levels?
- New programming models
 - Pict: concurrent programming
 - π-calculus
Keep making abstractions!

- Abstractions that limit allowable code to be more correct
 - Static type checking
 - Dependent types for code correctness
 - Dafny: ensures, requires
- Executable biology – programs that simulate biological processes
 - Kappa: rule-based protein interaction networks
 - programming languages for other abstraction levels?
- New programming models
 - Pict: concurrent programming
 - π-calculus
 - both sequential composition and parallel composition of code
One final similarity between notations and programming languages...
One final similarity between notations and programming languages...
sometimes you get into wars about which ones are right!
Vectors vs. quaternions.

Oliver Heaviside, in *Electromagnetic Theory*, 1893:
"A vector is considered by Hamilton and Tait to be a quaternion ... It is really a vector. It is as unfair to call a vector a quaternion as to call a man a quadruped."

"Students who had found quaternions quite hopeless could understand my vectors very well."
Vectors vs. quaternions.

Oliver Heaviside, in *Electromagnetic Theory*, 1893:

"A vector is considered by Hamilton and Tait to be a quaternion... It is really a vector. It is as unfair to call a vector a quaternion as to call a man a quadruped."
Vectors vs. quaternions.

Oliver Heaviside, in *Electromagnetic Theory*, 1893:
“A vector is considered by Hamilton and Tait to be a quaternion... It is *really* a vector. It is as unfair to call a vector a quaternion as to call a man a quadruped.”
Vectors vs. quaternions.

Oliver Heaviside, in *Electromagnetic Theory*, 1893:

“A vector is considered by Hamilton and Tait to be a quaternion… It is really a vector. It is as unfair to call a vector a quaternion as to call a man a quadruped.”

“Students who had found quaternions quite hopeless could understand my vectors very well.”
Notation wars

Standards proliferated.
Notation wars

Standards proliferated.

Florian Cajori, in *A History of Mathematical Notations*, 1928:
Standards proliferated.

Florian Cajori, in *A History of Mathematical Notations*, 1928:
“...the mark ‘$\nabla \nabla a$’ used by Tait, is Gibb’s ‘$\nabla \times a$’ Heaviside’s ‘curl a’, Wiechert’s ‘Quirl a’, Lorentz’ ‘Rot a’, Voigt’s ‘Vort a’, Abraham and Langevin’s ‘Rot \tilde{a}’.”
Notation wars

Standards proliferated.

Florian Cajori, in *A History of Mathematical Notations*, 1928:
“...the mark ‘∇\nabla a,’ used by Tait, is Gibb’s ‘∇ \times a,’ Heaviside’s ‘curl a,’ Wiechert’s ‘Quirl a,’ Lorentz’ ‘Rot a,’ Voigt’s ‘Vort a,’ Abraham and Langevin’s ‘Rot \tilde{a}.’ ”

- committee appointed by Felix Klein in 1903: couldn’t decide
- special commission of the International Congress of Mathematicians in 1908: couldn’t decide
Standards proliferated.

Florian Cajori, in *A History of Mathematical Notations*, 1928:
“...the mark ‘\(\nabla \nabla a \)' used by Tait, is Gibb’s ‘\(\nabla \times a \)' Heaviside’s ‘curl \(a \)', Wiechert’s ‘Quirl \(a \)' Lorentz ‘Rot \(a \)' Voigt’s ‘Vort \(a \)' Abraham and Langevin’s ‘Rot ˜\(a \)'.”

- committee appointed by Felix Klein in 1903: couldn’t decide
- special commission of the International Congress of Mathematicians in 1908: couldn’t decide

Maybe having many standards is the necessary price of **innovation**.
What programming languages can learn from notations:
What programming languages can learn from notations:

- Be visual
What programming languages can learn from notations:

- Be visual
- Build abstractions
What programming languages can learn from notations:

- Be visual
- Build abstractions
- Standardization wars happen sometimes
What programming languages can learn from notations:

- Be visual
- Build abstractions
- Standardization wars happen sometimes

Further reading:

- *Drawing Theories Apart*, David Kaiser: the history of Feynman diagrams
- *To Mock a Mockingbird*, Raymond Smullyan: combinator puzzles
- *A History of Mathematical Notations*, Florian Cajori
What programming languages can learn from notations:

- Be visual
- Build abstractions
- Standardization wars happen sometimes

Further reading:

- *Drawing Theories Apart*, David Kaiser: the history of Feynman diagrams
- *To Mock a Mockingbird*, Raymond Smullyan: combinator puzzles
- *A History of Mathematical Notations*, Florian Cajori

Thanks!

@csvoss