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1 Introduction

Executable biological models are tools that biology researchers can use to test their
research hypotheses against current biological knowledge in silico, before deciding
on experiments to run in vivo. [10] Examples of executable models include logic
programs, Boolean networks, and rule-based models. By executable models, we in
fact refer specifically to programs, written in specialized programming languages
designed specifically for making biological models. Unlike mathematical models
such as systems of differential equations or correlation-based models, executable
models allow experiments to be executed against novel input conditions, produc-
ing predictive power by encapsulating available human knowledge into executable
code.

Executable models can be created to serve many areas of biology research. One
topic to which they can be applied is cellular signaling pathways, the study of the
network of protein-protein and protein-ligand interactions within cells. This area
is particularly well-suited to executable modeling because rule-based modeling, a
modeling technique which involves indirectly specifying differential equations by
directly specifying transformations and binding interactions among reactants, pro-
vides an effective modeling strategy. [4] In addition to being executable, rule-based
models of cellular signaling pathways are also conducive to static analyses such as
reachability analysis [8] [5] or symmetry analysis [9]. Rule-based modeling will be
our focus in this work.

Executable models are useful tools, but it’s time-consuming for researchers to
keep their models up-to-date with the continual pace of new in vivo research results.
In many cases, a modeling program once written may progressively become more
and more out of date with respect to current human knowledge, becoming obsolete
software unless continual manual efforts are made to keep it up to date. Software
obsolescence hinders computational biological models from being as useful as they
could be.

Towards solving this hindrance, some ongoing research efforts [3] [13] [11] at-
tempt to use natural language processing (NLP) in order to extract facts from the sci-
entific literature and to construct models automatically based on those facts. How-
ever, we claim that this procedure alone cannot guarantee correctness. These ex-
tracted facts may not always be unambiguous: oftentimes acronyms, for example,
can have many meanings which context disambiguates. Sometimes the full com-
prehension of one fact may first require the comprehension of many prerequisite
facts, such as definitions and reaction mechanisms. There are interdependencies
whose resolution may not always be clear-cut, so it is not always easy to translate
natural language statements into the direct mechanistic rules that rule-based mod-
eling languages require.

If this claim is correct, then there is a gap to be bridged between NLP-extracted
facts and the final goal of complete and correct models of cellular signaling path-
ways. Inresponse to this gap, we construct a tool that translates NLP-extracted facts
into predicates in a first-order graph logic, then reasons about collections of those
predicates in order to extract an executable rule-based biological model. Although
we choose a specific ecosystem of NLP fact extraction system (INDRA [13]) and
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rule-based model programming language (Kappa [4]) with which to integrate our
tool, our tool demonstrates the feasibility of a more general strategy of approach:
logical inference as a way to bridge the gap from NLP-extracted facts, enabling the
construction of complete, correct, and up-to-date executable models.

2 Related Work

2.1 Rule-based modeling

Our work specifically pertains to rule-based models of protein-protein interactions,
which are well-suited for modeling large systems of proteins in a single cell and
which find applications in cancer biology. These models consist of a list of rules;
each rule defines an interaction that might take place among one or more chemi-
cal agents (usually proteins), and the reaction rate at which that interaction takes
place. Executing the rule-based model consists of simulating the set of differential
equations that this list of rules and reaction rates specifies.

Reaction rules Simulation of resulting system

+ — @ (0.2)
o @ -@
+@-0-9 @(08) ® - ® - ®

o o @

Fig. 1. Rule-based modeling: reaction rules are executed in order to simulate a run of the system.

Kappa is one programming language that can be used to write rule-based models
for modeling networks of interactions between proteins [4]. We choose to imple-
ment our tool to work with Kappa models. Kappa is a great choice of language for
both rule-based models and for static analysis of rule-based models because of its
clearly defined operational semantics. Additionally, Kappa has precisely-defined
syntax for indicating protein structures such as binding sites and enzyme active
sites, and can describe operations such as binding, phosphorylation, and catalysis
in its rules for reactions. [14]

Furthermore, there is a great ecosystem of work built up around Kappa: KaSim
[16] is a compiler for Kappa which stochastically simulates the evolution over time
of a system governed by some set of Kappa rules by choosing reactions to apply in
proportion to their relative rates. Kami [15] is a tool for aggregating pieces of bio-
logical knowledge and related model components. Finally, PySB [17] is a a Python
framework for constructing biological models that can be compiled into Kappa and
that facilitates the creation of macros and abstractions for Kappa models.

2.2 Prior static analyses of Kappa

Our work is not the first research into analysis of Kappa models. Feret 2007 inves-
tigated reachability analysis for Kappa: this is an analysis that can determine which
complexes of one or more molecules are reachable by some conceivable sequence of
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reactions, no matter how unlikely [8]. This analysis offers insight into what kinds
of molecule complexes will be combinatorially possible according to the system’s
reaction rules, and can also be used to detect whether any reactions are impossible
to trigger. Danos, Feret, Fontana, and Krivine 2008 elaborate on this work, develop-
ing an abstract interpretation for biological signaling networks in order to explore
the set of complexes that are reachable by a Kappa ruleset [5].

In other work, Camporesi 2013 investigated techniques for reducing the com-
binatorial complexity of models with many possible molecular complexes, deter-
mining ways of coarse-graining models in order to trade off accuracy for efficiency
[2].

Finally, Feret 2014 [9] notes that detecting symmetries in models can help to
reduce the complexity of simulating those models, and presents an abstract inter-
pretation analysis for finding symmetries in Kappa graphs.

Our work is unique from these analyses because we do not start with a complete
Kappa model to analyze. Instead, we start with non-mechanistic biological facts,
and must proceed from there to constructing a satisfactory Kappa model; thus,
we are tackling a different problem and must develop new tactics. However, we
conclude from these prior works that Kappa is a language well-suited to rigorous
and logic-based static analyses.

2.3 NLP fact extraction

Programming biological models by hand - fact by fact — takes time, and since re-
search continues onward at a breakneck pace, it is unlikely for a model to stay up-
to-date for very long after it has been constructed. This is the software obsolescence
problem, as mentioned. Various projects in the Big Mechanism program [3] aim to
facilitate the automated creation of executable biological models, focusing in par-
ticular on modeling signaling pathways in cancer biology. The goal is to create
models that can generate causal explanations for biological processes and aid in
the development of new research hypotheses.

Even though languages like Biological Expression Language (BEL) [1] or Bio-
logical Pathways Exchange (BioPAX) [7] allow research results to be described in a
computer-readable syntax, most biological knowledge is not yet available in these
computationally friendly formats. Instead, this knowledge is wrapped up in scien-
tific papers.

Currently, there are a handful of research projects investigating the automated
creation of executable biological models by using natural language processing
(NLP) to scrape information from these papers. INDRA one such project: it scrapes
facts from NLP of scientific literature, adds in facts from BEL and BioPAX databases,
then exports the rules that it gathers to a model written in PySB. [13] [11] Not all of
the rules that INDRA collects are mechanistic, however, as explained below; this gets
in the way of constructing complete models. The role of our tool, entitled Syndra
(from “synthesis” + INDRA), is to use logical inference to deduce the remaining
mechanistic rules.

We collaborated with the INDRA developers in order to devise a tool that could
address their needs, and we demonstrate that our system can integrate with INDRA
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as a frontend. The techniques that we demonstrate in this work could be extended
to work alongside other systems similar to INDRA.

2.4 Mechanistic rules

One obstacle to the NLP approach is that facts extracted by NLP may not be able
to feed directly into a rule-based model. Models need to be constructed from mech-
anistic rules: “Raf phosphorylates MEK at site Ser-222,” for example, is straight-
forwardly mechanistic and therefore easy to transform into an executable model
simulating reactions of proteins. In contrast, the facts extracted by NLP may take
many forms, not all of which are clear-cut mechanistic rules. For example, NLP
may discover non-mechanistic rules, for example, such as the following facts about
the Ras-Raf-MEK-ERK cancer pathway:

* Active ERK1 phosphorylates RSK. This seems mechanistic at first — phospho-
rylation reactions are common — but we’re missing one key piece: what does it
mean for ERK to be active?

* MEK phosphorylates the ERK protein family. This isn’t precise enough: which
members of the ERK protein family does MEK phosphorylate, and by what
mechanism?

* Addition of EGF causes activation of ERK1. This tells us that activity in one
protein causes activity in another protein, but we don’t know how many causal
steps take place in between; for this example, EGF only activates ERK1 indirectly,
through a pathway involving several intermediate receptors and signaling pro-
teins.

Some facts produced by the NLP aren’t even “rules” at all, but are still useful for
constructing a model and disambiguating other facts. We call these domain knowl-
edge. Some examples:

* When ERK1 is phosphorylated, it is active. This is not a rule because it doesn’t
describe a chemical reaction, but it gives us key knowledge for decoding separate
statements such as “Active ERK1 phosphorylates RSK”.

* ERK1 and ERK2 are in the ERK protein family. Similarly, this is not a rule, but
it helps us decode “MEK phosphorylates the ERK protein family”.

¢ S151D-mutated ERK1 behaves as if always phosphorylated. This piece of
knowledge can only be decoded if there are already rules about how phospho-
rylated ERK1 behaves.

To construct an executable biological model, we will need mechanistic rules. For
example, the above examples of non-mechanistic rules and domain knowledge are
consistent with the following list of mechanistic rules:

* MEK phosphorylates ERK1.
* MEK phosphorylates ERK2.
* Phosphorylated ERK1 phosphorylates RSK.
* Phosphorylated ERK2 phosphorylates RSK.
S151D-mutated ERK1 phosphorylates RSK.
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In summary, NLP output can be messy: it contains mechanistic rules, non-
mechanistic rules, and domain knowledge, all of which must be woven together
in order to create an accurate model composed only of mechanistic rules. As a so-
lution, we have created a tool that uses logical inference to deduce a set of clear-cut
mechanistic rules that are consistent with the messier input facts NLP produces.

3 Bridging the gap using logical inference

In order to deduce which mechanistic rules are implied by the available facts, we
devise a tool that performs logical inference over those facts.

First, we choose a logical language that permits us to describe the interactions
between proteins in a cellular signaling pathway as logical predicates. We ensure
that this language has a clearly-defined semantics that tie directly to the semantics
of Kappa and allow us to express and analyze constraints over the set of all possible
Kappa models.

Next, we implement definitions of properties about proteins that might be ex-
tracted by NLP from papers: for example, “phosphorylates” or “is activated”. Each
definition is implemented as a function which produces a predicate in our logical
language. Having defined these properties, we can then express complete NLP-
extracted facts as predicates. We implement functionality for converting facts from
INDRA into our tool’s representation of predicates in order to demonstrate the fea-
sibility of this procedure

Finally, writing a solver allows us to automate reason about the relationships
among these predicates so that we can make deductions about facts and produce
complete Kappa models as a result. We implement this solver using an industrial-
strength Satisfiability Modulo Theories (SMT) solver, with custom code tailored to
the task of translating our logical language’s predicates into SMT queries.

With all of these pieces put together, we can convert a collection of NLP-
extracted facts into a set of mechanistic rules consistent with those facts, automating
the construction of rule-based computational models.

4 Architecture

4.1 Predicates

While constructing a model, every new fact that we add should add a little more
nuance. The more pieces of information we have, the fewer candidate models there
are: more and more models get eliminated for being inconsistent with the known
facts. Individual biological facts therefore constrain the space of possible models,
and predicates in a logic are a natural way to represent those constraints.

By using a formalized logic language for describing the space of possible mod-
els, with a clearly-defined semantics for each of the structures which that logic lan-
guage can express, we can thus go about the task of rigorously building models
from natural language constraints. Here, we describe such a language.

First, some review of Kappa. Each Kappa model is a set of rules: these are the
reactions that may take place. In Kappa, a rule is executed as a graph rewrite: for
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example, two previously-unbound agents in the system’s state may become bound,
adding an edge between them. The “graph” in this case is anything that could be
the state of a biological model in the middle of its execution.

We want the interpretation of a Syndra predicate to be a set of Kappa models.
In order for predicates to be interpreted, we need a data structure we can use to
represent putative Kappa models.

Data structures.

As a data structure for Kappa’s graph rewrite rules, we will use a tuple of pre-
graph and postgraph. The pregraph is a representation of the left hand side of the
Kappa rule; the postgraph is a representation of the right hand side of the Kappa
rule. The data structure for a graph, in turn, must contain a bunch of information:
a way to represent agents that are involved in the graph, a way to represent linking
(or binding) and site (or parent-child) interactions among agents, and a way to la-
bel agents as having state modifiers such as “phosphorylated” or “active”, any sort
of variable carrying information that might helpfully inform the constraints of our
logical solving procedure.

type Node = anenum

type Edge = a datatype with attributes [ nodel: Node, node2: Node ]

type Label = anenum

type Graph = a datatype with attributes [ has: Set{Node), links: Set{ Edge),
parents: Set{ Edge), labelmap: Mapping{Node, Set{Label} ]

type Rule = a datatype with attributes [ pregraph: Graph, postgraph: Graph ]

type Model = Set{Rule)

Fig. 2. Data structures for Syndra’s representation of Kappa.

With these data structures in place, predicates over models can be represented
as combinations of predicates over Kappa rules, which in turn are simply predicates
over the pregraph and postgraph. As a consequence of this, our logic language is
divided into three different tiers of predicate: one that constrains over models, one
that constrains over rules, and one that constrains over graphs.

Semantics.

In the below figures, which describe the semantics and interpretations of these
predicates, let ./ represent the set of all possible models, % represent the set of all
possible rules, and ¢ represent the set of all possible graphs. ¢ and ¢ always repre-
sent predicates. Let the subscripts m, r, or g, when attached to ¢ or ¢, disambiguate
whether that predicate is a model predicate, a rule predicate, or a graph predicate.

If a predicate is satisfiable, that means that there exists some model or models
under which it is true. We will call a predicate ambiguous if there are multiple such
models, or unambiguous if there is only one. An unsatisfiable predicate is one which
is not true for any model, and a valid predicate is one that is true for all models.
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Having chosen this formalism to work with, we then architect a system to im-
plement the analysis of Syndra predicates.

5 Implementation

In order to most easily interface with INDRA and with PySB models, the Syndra
predicate solver is written in Python and produces Python objects as output.

Satisfiability solving and logical deductions in the Syndra predicate solver is
powered by the Z3 theorem prover. Z3 is an SMT solver developed by Microsoft
Research [6], and can easily interface with Python via its Python bindings [18]. Z3
is well-suited for this problem because it permits making assertions about relation-
ships among collections of variables, then checking whether those assertions are
satisfiable or not. Z3 is powerful enough to tackle problems described by first-order
logic.

We define Z3 datatypes such as Node, Edge, and Graph to represent portions of
Kappa rules, then create a Python type Predicate with various subclasses for each
component in the logic language; instances of Predicate each provide an interface
to Z3 to make assertions over those datatypes, effectively compiling Syndra’s first-
order logic to Z3’s first-order logic. This provides us with sufficient power to check
the satisfiability of arbitrary Syndra predicates.

In the Syndra code, Rule predicates and model predicates are referred to as
Predicate, with subclasses for each component of the rule predicate language and
model predicate language. Graph predicates are referred to as Structure, with
subclasses for each component of the graph predicate language.

Putting it all together.

Here is some sample code that instantiates a Syndra predicate as the variable
predicate. This predicate asserts that the model has some rule in which a molecule
named “enzyme” can bind to some molecule labeled “substrate” at a specific site
of the enzyme:

import structure

import predicate

enzyme = structure.Agent("enzyme")

enzyme_site = structure.Agent("enzyme_site")

substrate = structure.Agent("substrate")

predicate = predicate.ModelHasRule(lambda r: predicate.And(
predicate.PregraphHas(r, enzyme.with_site(enzyme_site)),
predicate.PregraphHas(r, substrate),
predicate.PostgraphHas(r, enzyme.with_site(

enzyme_site.bound(substrate)))))

5.1 Predicate features

A Predicate object, once instantiated, permits the following operations:

* Check a predicate’s satisfiability;
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e Check whether some predicate X implies some other predicate Y;
* Output a rule-based model satisfying a predicate (if satisfiable).

Below I'll describe these operations, how to interface with them, and how they
contribute to the overall goal of being able to combine collections of biological facts
together into a sound executable model. These operations allow us to deduce incon-
sistencies, detect redundancies, and eliminate ambiguity during model construc-
tion.

The code for our tool can be found at https://github.com/csvoss/syndra.

Deducing inconsistencies

Syndra can determine whether including two biological facts in a model to-
gether would be unsound. For example, it is not possible to combine the facts x
= “MEK phosphorylates ERK” and —x = “MEK does not phosphorylate ERK” into
a coherent model. We can make a predicate combining these two facts, and check
that it is in fact unsatisfiable:

>>> from syndra.engine import macros, predicate
>>> x = macros.directly_phosphorylates("MEK", "ERK")
>>> y = predicate.Not(x)

>>> x_and_y = predicate.And(x, y)
>>> print x_and_y.check_sat()
False

By checking the satisfiability of multiple predicates, we deduce inconsistencies:
this allows us to flag to model-builders that something might be wrong with the
NLP-extracted facts being used to construct the model.

Detecting redundancies

Syndra can also detect whether two or more biological facts x and y imply a
third biological fact z. We create a predicate for each biological fact, then check
whether x A y = z is valid — that is, check whether —(x A y = z) is not satisfiable.
The following sample code uses Syndra to perform this operation for the example
of checking whether x = “MEK phosphorylates ERK” and y = “phosphorylated
ERK is active” together imply z = “MEK activates ERK":

>>> from syndra.engine import macros, predicate

>>> x = macros.directly_phosphorylates("MEK", "ERK")
>>> y = macros.phosphorylated_is_active ("ERK")
>>> z = macros.directly_activates("MEK", "ERK")

>>> x_and_y_imply_z = predicate.Implies(predicate.And(x, y), z)
>>> print x_and_y_imply_z.check_sat ()

True

>>> print predicate.Not(x_and_y_imply_z).check_sat()

False

By deducing implications, we can detect redundancies: if a new fact is always
implied by the existing facts, that means it is redundant.
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Eliminating ambiguity
Finally, Syndra can extract a model satisfying a predicate or set of predicates.
The following sample code illustrates:

>>> g = solver.MySolver()
>>> s.add(predicate)
>>> s.model()

It is also possible to extract more than one model satisfying a predicate: add a
new constraint requiring that the model not be the one just extracted, and extract
again.

By being able to extract Kappa models satisfying predicates, we solve two prob-
lems: not only is it useful to have the model itself, but if multiple models can satisfy
the same set of predicates, we can conclude that there is still ambiguity which could
be eliminated.

6 Applications and integrations

Syndra can be applied to the problem of converting biological facts into rule-based
models, solving the original problems with NLP model generation that motivated
us to carry out this research. We’ve shown how we chose and implemented a graph
logic language for describing predicates over biological models; here, we’ll discuss
how we can use this tool with real output produced by INDRA in order to produce
biological models.

6.1 Macros

We have remarked that Syndra permits the direct construction of predicates; Syn-
dra also permits the construction of predicates automatically from INDRA facts.

In order to make it easier to create predicates based on the higher-level En-
glish statements that natural language processing yields, Syndra defines a col-
lection of macros. These are functions which output predicates for some com-
mon biological facts, parametrized on a few variable inputs. For example,
directly_activates(A, B) outputs a predicate specifying that A activates B, and
phosphorylated_is_active(A) outputs a predicate specifying that phosphory-
lated A must be active.

In order to define each of these macros, we choose a way to express the statement
as a Syndra predicate. For example, the implementation of the phosphorylation
macro directly_phosphorylates(A, B) requires that the model contain at least
one rule in which on the left hand side, A is active and B is not phosphorylated,
and on the right hand side, A is still active and B has become phosphorylated:

directly_phosphorylates(A, B) =
predicate.Exists(predicate.Implies(predicate.Named(A, name_a),
predicate.Implies(predicate.Named (B, name_b),
predicate.And(predicate.PrelLabeled (A, ACTIVE),
predicate.PreUnlabeled(B, PHOSPHORYLATED),
predicate.PostLabeled(A, ACTIVE),

11



Voss

predicate.PostLabeled(B, PHOSPHORYLATED)))))

Different labs using computational tools often have different preferences for
how to model certain systems and the assumptions that they make. If macros are
created using an underlying logic language, then labs are able to customize accord-
ing to their own preferred definitions and assumptions, encode those definitions as
predicates using macros, and have the resulting logical deductions still be sound
by Syndra’s semantics.

We can use these macros in order to convert INDRA statements into Syndra
predicates: pattern-matching on the INDRA Python object and then applying the
right macro appropriately. This is in statements_to_predicates.py.

6.2 Interfacing with INDRA

We have used Syndra as a tool to assist in the logical analysis of models output by
INDRA, an actual NLP-based automatic model generator and part of the Big Mech-
anism initiative [13]. INDRA gathers data by performing natural language process-
ing on biology papers with the TRIPS parser and by including facts from databases
including BEL (Biological Expression Language) and BioPax. The INDRA develop-
ers presented us with ideas for analyses that Syndra could facilitate; the ability to
check implications between different NLP-generated statements was one such idea.
In order to do this for INDRA’s output, we converted INDRA statements — Python
objects produced by the INDRA software, each of which represents an individual
biological fact — into Syndra predicates, by determining the appropriate macro to
apply to each INDRA statement. From there, we can check implications between
Syndra predicates as usual.

For example, Syndra can take in a list of the following three INDRA statements,
representing a small system in which protein MAPK1 is only activated if it is phos-
phorylated by MAP2K1 at both at Thr-183 and Tyr-185, and verify that they all
imply the last INDRA statement, which asserts that MAP2K1’s kinase activity in-
creases the kinase activity of MAPKI:

Phosphorylation(MAP2K1, MAPK1, PhosphorylationThreonine, 183)

Phosphorylation(MAP2K1, MAPK1, PhosphorylationTyrosine, 185)

ActivityModification(MAPK1, [‘PhosphorylationThreonine’,
‘PhosphorylationTyrosine’], [‘183’, ¢185’], increases, Activity)

¢

ActivityActivity(MAP2K1, Kinase, increases, MAPK1, Kinase)

The code supporting the conversion of individual INDRA statements into Syn-
dra predicates can be found at engine/statements_to_predicates.py. Addition-
ally, Syndra can take in a list of INDRA statements, convert them all to predi-
cates, and return the corresponding model. Examples of how to do this are in
interface_indra_to_syndra.py.

INDRA is under active development; as more features are added to INDRA, the
library of macros supported by Syndra can be expanded to accommodate them.
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7 Conclusion

Syndra is a tool for translating biological facts into predicates in order to find com-
plete Kappa models satisfying sets of biological facts. We implemented predicates
and datatypes, and leveraged the Z3 bindings for Python in order to assert the pred-
icates hold over the datatypes. We built macros describing common biological facts
as predicates, and showed that Syndra can reason correctly about implication re-
lationships among these predicates. Finally, we can interface with INDRA and de-
duce a model from INDRA's statements.

In future work, we could see more work improving Syndra towards the goal of
smoothly converting facts from systems like INDRA all the way to Kappa or PySB
models. Currently, the models that Syndra outputs are instances of Z3 datatypes,
representing satisfying values of the datastructures - enough information to de-
scribe a Kappa model - rather than Kappa models themselves, directly. This Z3
output contains enough information to be translated into a Kappa model; one im-
portant next step would be to implement that translation.

In addition, the library of macros that Syndra supports could be expanded.
There are a wide variety of concepts and pieces of domain knowledge that allow
biologists to make inferences about the behavior of proteins: for example, a protein
mutation that changes an amino acid to aspartic acid is “phosphomimetic," likely
to make that site on the protein behave as if it is phosphorylated. Syndra could be
extended in order to encode a greater variety of pieces of domain knowledge into
its predicates. With predicates for domain knowledge like these in hand, we would
be able to make better inferences and better models.

More broadly, we are moving towards a future where research is increasingly
carried out not by humans acting and reasoning alone, but by humans working to-
gether with the computational tools that assist them. It is likely that in the future
there may be even more advanced computational systems for reasoning about bi-
ological problems. Executable biological models are potentially a useful resource
to this future: not only can they be executed, but they are also machine-readable,
and thus easier for new computational tools to integrate with than human research
results alone.

With our work implementing this procedure, we have developed a method by
which biological knowledge can be converted from human-readable statements
into machine-readable rules. This infrastructure could catalyze the creation of even
greater computational tools in the future, if it becomes possible to construct and
maintain rule-based biological models automatically.
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